Electric vehicles will play a crucial role in humanity’s fossil fuel-free future, but no technology comes without cost. The lithium-ion batteries that EVs run on are made from metals that are mined at a serious environmental and human toll, and from supplies that won’t last forever. When those batteries die, they’re liable to join the tens of millions of tons of spent electronicspiling up as e-waste in landfills around the world.

That’s why we badly need to develop better methods for recycling EV batteries and start scaling up the recycling infrastructure now, a team led by researchers at the University of Birmingham in the UK argue in a review paper published today in Nature. As the paper notes, the one million EVs sold around the world in 2017 will eventually result in 250,000 tons of battery pack waste that the world’s recycling infrastructure is ill-equipped to handle. And while EV batteries can last for up to 20 years, the potential battery waste in the pipeline as EV sales grow year over year is enormous.

“It is important that we anticipate problems before they happen,” said lead study author Gavin Harper, a research fellow at the University of Birmingham’s Faraday Institution. “We have seen in the past with car tires and fridges how waste mountains can arise if we don’t anticipate waste management problems.”

In their paper, Harper and his colleagues try to sketch out what an effective waste management infrastructure could look like for EV batteries, which, in addition to lithium, contain critical metals like manganese, copper, and cobalt. As with consumer electronics, managing waste starts with extending the life of EV batteries as much as possible. When they’re no longer useful for driving, they can be repurposed for other types of energy storage like home batteries—an idea that companies are already pilot-testing around the world.

But eventually, EV batteries will reach the end of their useful life, at which point they need to be recycled. Today, Harper said, most recycling revolves around using heat to melt the batteries down to slag, followed by chemical separation techniques that recover specific metals like cobalt. But these so-called pyro and hydro-metallurgical techniques are energy intensive and produce toxic gas byproducts, and the materials they recover are often low quality.

To read the full story, visit https://www.vice.com/en_us/article/ywajkw/todays-electric-car-batteries-will-be-tomorrows-e-waste-crisis-scientists-warn.